The neural representation of speed in macaque area MT/V5.

نویسندگان

  • Nicholas J Priebe
  • Carlos R Cassanello
  • Stephen G Lisberger
چکیده

Tuning for speed is one key feature of motion-selective neurons in the middle temporal visual area of the macaque cortex (MT, or V5). The present paper asks whether speed is coded in a way that is invariant to the shape of the moving stimulus, and if so, how. When tested with single sine-wave gratings of different spatial and temporal frequencies, MT neurons show a continuum in the degree to which preferred speed depends on spatial frequency. There is some dependence in 75% of MT neurons, and the other 25% maintain speed tuning despite changes in spatial frequency. When tested with stimuli constructed by adding two superimposed sine-wave gratings, the preferred speed of MT neurons becomes less dependent on spatial frequency. Analysis of these responses reveals a speed-tuning nonlinearity that selectively enhances the responses of the neuron when multiple spatial frequencies are present and moving at the same speed. Consistent with the presence of the nonlinearity, MT neurons show speed tuning that is close to form-invariant when the moving stimuli comprise square-wave gratings, which contain multiple spatial frequencies moving at the same speed. We conclude that the neural circuitry in and before MT makes no explicit attempt to render MT neurons speed-tuned for sine-wave gratings, which do not occur in natural scenes. Instead, MT neurons derive form-invariant speed tuning in a way that takes advantage of the multiple spatial frequencies that comprise moving objects in natural scenes.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A logarithmic, scale-invariant representation of speed in macaque middle temporal area accounts for speed discrimination performance.

Human speed discrimination thresholds follow Weber's law over a large range of reference (i.e., pedestal) speeds, that is, the just-noticeable-difference in speed scales in proportion to the reference speed. We analyzed the neural representation of speed information in macaque middle temporal visual area (MT) to determine whether this representation can account for the basic form of psychophysi...

متن کامل

Aging affects the neural representation of speed in Macaque area MT.

Human perception of speed declines with age. Much of the decline is probably mediated by changes in the middle temporal (MT) area, an extrastriate area whose neural activity is linked to the perception of speed. In the present study, we used random-dot patterns to study the effects of aging on speed-tuning curves in cortical area MT of macaque visual cortex. Our results provide evidence for a s...

متن کامل

The selectivity of neurons in the macaque fundus of the superior temporal area for three-dimensional structure from motion.

Motion is a potent cue for the perception of three-dimensional (3D) shape in primates, but little is known about its underlying neural mechanisms. Guided by recent functional magnetic resonance imaging results, we tested neurons in the fundus of the superior temporal sulcus (FST) area of two macaque monkeys (Macaca mulatta, one male) using motion-defined surface patches with various 3D shapes s...

متن کامل

Neural architectures for stereo vision

Stereoscopic vision delivers a sense of depth based on binocular information but additionally acts as a mechanism for achieving correspondence between patterns arriving at the left and right eyes. We analyse quantitatively the cortical architecture for stereoscopic vision in two areas of macaque visual cortex. For primary visual cortex V1, the result is consistent with a module that is isotropi...

متن کامل

Modeling Motion Processing in Macaque Area Mt/v5: from Single Cells to Population Codes

Theoretical and psychophysical studies have shown that the relative motion between observer and environment induces a retinal ow from which object edges and 3D surface shapes (shape-from-motion) can be reconstructed. The primate middle temporal area MT or V5, for which there is general agreement that it is implicated in motion processing, is a likely candidate for generating such descriptions. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 23 13  شماره 

صفحات  -

تاریخ انتشار 2003